
OA 3302
Summer 2004

Due: 2 August 2004
Computer Lab 3: Multiple Server Queue with Reneging Customers

Concepts
• Simple use of containers
• Passing parameters in waitDelay() method
• Use of interrupt() to implement cancelling edge
• CongruentialSeeds.SEED[]
• Multiple Runs

Description
Impatient customers arrive to a multiple-server queue; each customer is only willing to wait a cer-

tain amount of time in the queue, after which he or she will “renege.” A reneging customer leaves the
queue and never returns to the system. For the model, these “renege times” will be assumed to be indepen-
dent identically distributed random variables, which will be denoted tR. The Event Graph for the server
portion of the model is shown in Figure 1.1

The model in Figure 1 adds reneging by receiving unique customer objects upon arrival to the
queue (i.e. at the Arrival event). This customer is added to the end of a fifo container (called ‘q’).2 The
Renege event is then scheduled, with the customer passed as a parameter. When the Renege event occurs,
it removes the customer in its argument from the queue and increments the renege count (R). Whenever a
StartService occurs first, however, the Renege event corresponding to that customer is cancelled.

Start

Service
End

Service (c)Arrival (c)

{q.add(c)} {S--, c =q.removeFirst(),
{S++,

(q.size() > 0)

(S > 0)

tS

Renege

c

{q.remove(j), R++}

tR
c D = simTime - c.getCreationTime()}

(j)

W = simTime - c.getCreationTime()}

c

Figure 1. Event Graph for Multiple Server Queue with Reneging Customers
There are three new features of Simkit you will need to implement this model: defining events

with arguments, passing parameters on edges, and cancelling edges. Additionally, you will be using some
of the built-in random number seeds.

1. The arrivals will be generated using the ArrivalProcess class from Lab 01.
2. The container q is a fifo queue with the additional property that elements can be removed from the middle

as well.

The Customer Class
First define the Customer class (note that it does not subclass SimEntityBase). This will

have two instance variables, one for the time the customer was “created”1 and the second containing the
renege time for the customer. This time should be passed into the Customer’s constructor as a double.
These two instance variable should be exposed by (public) getter methods.

The CustomerCreator Class
Customers will be created by the CustomerCreator class. This is a SimEntityBase sub-

class that has a RandomVariate parameter to generate the renege times.2 The Event Graph for Cus-
tomerCreator is

cArrival Arrival(c)

{c = new Customer(...)}

 shown in Figure 2

Figure 2. CustomerCreator Event Graph
The Event Graph in Figure 2 has the following implementation for the zero-parameter Arrival event:

public void doArrival() {
waitDelay("Arrival", 0.0, new Customer(renegeTime.generate()));

}

The third argument to waitDelay passes the parameter to the event, as will be discussed next.

Defining Events with Arguments
Defining events with arguments is very easy in Simkit. Simply add the arguments to the corre-

sponding “do” method. For the Event Graph in Figure 1 the Renege event has an argument which is a Cus-
tomer. Thus, the doRenege() method in the ServerWithReneges class that implements Figure 1 should
have signature Customer.3

Before writing the primary class, ServerWithReneges, here is some information about pass-
ing parameters on edges and implementing canceling edges in Simkit.

Passing Parameters on Edges
Parameters are passed as the third argument in the waitDelay() method corresponding to the sched-

uling edge. If there is only one element in the signature of the event being scheduled then it is simply added
as a third argument.4 If the signature is a primitive type, then the third argument in the waitDelay() call
should be the corresponding Object wrapper. For example, if the Renege event method is defined as
public void doRenege(Customer customer), then the waitDelay() call in the doAr-
rivval(Customer) method should be:

waitDelay(“Renege”, customer.getRenegeTime(), customer);

1. Use Schedule.getSimTime() to get the current value of simulated time.
2. Recall that a parameter is implemented as a private instance variable with a setter and a getter.
3. That is, public void doRenege(Customer customer)
4. If there are more than one element in the signature, then they must be wrapped in an Object[] array.
2

where renegeTime is the randomly generated renege time and customer is a reference to the arriving
customer.

Canceling Edges
Canceling edges are implemented in Simkit by invoking the interrupt() method (defined in

SimEntityBase). The form you should use here has signature (String, Object), where the first
argument is the name of the event to be canceled and the second argument is the parameter corresponding
to the event being cancelled. The first event that matches the value of the second parameter (as well as the
name of the first parameter) of the interrupt will be removed from the event list. If there is no such event on
the event list, then nothing happens.

In this case, the customer who is starting service must have his corresponding Renege event can-
celed, so the following code is used:

Customer customer = (Customer) queue.removeFirst();
...
interrupt(“Renege”, customer);

As with a scheduling edge, the call is made in the ‘do’ method corresponding to the event at the
tail of the edge. Here, queue is a LinkedList containing the customer objects for all those customers
in the queue who have not reneged. The interrupt() statements should occur after the state transitions
but before the waitDelay() statements.

The ServerWithReneges Class
The ServerWithReneges class processes customers according to the Event Graph in Figure 1.

It has the same parameters as the Server class from Lab 02, but the state variables are slightly different,
as shown in Table 1.1

Table 1: Parameters and States for ServerWithReneges Class

Parameter Type State Type

numberServers int numberAvailableServers int

serviceTime RandomVariate queue LinkedLista

a. In the java.util package

numberServed int

numberReneges int

Note carefully the ‘signatures’ for the events in Figure 1. The Arrival(c) event will be implemented
by a doArrival method with signature (Customer). After adding the incoming Customer to the
queue, the firePropertyChange call looks like this:

firePropertyChange("numberInQueue", queue.size() - 1, queue.size());

Since the customer has just been added to the queue, the ‘old value’ of the number in the queue is one less
than the current number. The waitDelay() that schedules the Renege event should get the renege time
from the Customer and should pass the Customer instance as the third argument.

The StartService event has no argument, so the doStartService() method should likewise
not either. Inside the method, you will need a reference to the Customer at the head of the queue, so use

1. Remember that parameters will have setters and getters, whereas state variables will only have getters.
3

the removeFirst() method of LinkedList to get the current customer. To implement the value of
‘D’ indicated in Figure 1, fire a PropertyChange event called “delayInQueue” whose value is the dif-
ference between the current time (Schedule.getSimTime()) and the time the current customer was
created. After all states have been changed, invoke the interrupt() method, and finally the waitDe-
lay() method.

Your constructor should have a signature the same as your Server class from Lab 02. Also, the
reset() method should invoke clear() on the queue instance variable to empty it.

Execution Class
Your execution class should instantiate an ArrivalProcess instance, a CustomerCreator

instance, and a ServerWithReneges instance. The SimEventListener structure is as shown in

ArrivalProcess CustomerCreator ServerWithReneges

Figure 3.

Figure 3. SimEventListener Structure
The notation shows the SimEventListeners for the three objects. In Figure 3, the CustomerCreator

instances is listening to the ArrivalProcess instance and the ServerWithReneges instance is listening to the
CustomerCreator instance.1

In addition to the two SimpleStatsTimeVarying instances for numberInQueue and
numberAvailableServers, instantiate two instances of SimpleStatsTally with Strings
“delayInQueue” and “timeInSystem” and add those two instances as PropertyChangeLis-
teners to the ServerWithReneges instance. These use Tally statistics and will provide the estimates
for the mean delay in queue and mean time in the system, respectively.

Parameters for Runs
Use the following parameters for your runs:

• Interarrival times are Exponential(1.5)
• Number of servers = 2
• Service times are Gamma(2.5, 1.2)
• Renege times are Uniform(4.0, 6.0)

There is a class in simkit.random called CongruentialSeeds that has a public static
array of longs called SEED. These are 10 useful seeds that can be used to initialize RandomVariate
instances. For this lab, use CongruentialSeeds.SEED[0] for arrivals, Congruential-
Seeds.SEED[1] for service times, and CongruentialSeeds.SEED[2] for renege times.

Output
You should use verbose and/or single-step modes to debug your model. When you are satisfied

that your model is working correctly, perform a run for 1000.0 time units, producing the following output:

1. Remember that for object a to be a SimEventListener to object b, the call is b.addSimEventLis-
tener(a);
4

Arrival Process
 Interarrival Times: Exponential (1.5)
Server with Reneging Customers
 Number Servers: 2
 Service Times: Gamma (2.5, 1.2)
 Renege times: Uniform (4.0, 6.0)
Simulation ended at time 1000.000
 Number Arrivals: 665
 Number Served: 563
 Number Reneges: 96
 Percent Reneges: 0.1452
 Avg # in Queue: 1.5460
 Utilization: 0.8710
 Avg Delay in Queue: 1.9192
 Avg Time in System: 5.0070

The “utilization” is defined to be the average utilization per server.1 The percent reneges should include
those customers who have reneged, finished service, or are currently in service, but not those in the queue.

Deliverables
Turn in hard copies of your source code (except the ArrivalProcess class) and the output

from the last long run (1000 time units).

Frequently Asked Questions

Can I have a primitive argument in my ‘do’ method?
Yes. However, the value must be wrapped in an Object when invoked in the waitDelay() statement.

For example the method:
public void doThis(int j) {
// do something
}

should be scheduled like this:
waitDelay(“This”, 1.0, new Integer(3));

What if my ‘do’ method has more than one parameter?
If a ‘do’ method has more than one parameter then you will also need to further wrap the Objects

in an Object array. For example, the following method:
public void doThat(int k, double x, String s) {
}

should be scheduled using a call something like this:
waitDelay(“That”, 1.1,
new Object[] {new Integer(42), new Double(3.141), “foobar”});

1. That is, 1.0 s
k
--– where s is the average number of available servers and k is the total number of servers.
5

Where do interrupt() calls go again?
Canceling edges are (by convention) executed after state transitions but before any scheduling

edges. Therefore, interrupt() calls must be put in a ‘do’ method after all states have been changed
and before any waitDelay() calls.
6

	Computer Lab 3: Multiple Server Queue with Reneging Customers
	Concepts
	Description
	The Customer Class
	The CustomerCreator Class
	Defining Events with Arguments
	Passing Parameters on Edges
	Canceling Edges
	The ServerWithReneges Class
	Table 1: Parameters and States for ServerWithReneges Class

	Execution Class
	Parameters for Runs

	Output
	Deliverables
	Frequently Asked Questions
	Can I have a primitive argument in my ‘do’ method?
	What if my ‘do’ method has more than one parameter?
	Where do interrupt() calls go again?

